Simultaneous object estimation and image reconstruction in a Bayesian setting

نویسنده

  • K. M. Hanson
چکیده

Suppose that it is desired to estimate certain parameters associated with a model of an object that is contained within a larger scene and that only indirect measurements of the scene are available. The optimal solution is provided by a Bayesian approach, which is founded on the posterior probability density distribution. The complete Bayesian procedure requires an integration of the posterior probability over all possible values of the image exterior to the local region being analyzed. In the present work, the full treatment is approximated by simultaneously estimating the reconstruction outside the local region and the parameters of the model within the local region that maximize the posterior probability. A Monte Carlo procedure is employed to evaluate the usefulness of the technique in a signal-known-exactly detection task in a noisy four-view tomographic reconstruction situation.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Improving the quality of ultrasound images using Bayesian estimators

Medical ultrasound imaging due to close behavior of cancer tumors to body tissues has a low contrast. This problem with synthetic aperture imaging method has been addressed. Although the synthetic aperture imaging technique solved the low-contrast problem of ultrasound images, to an acceptable limit, but the performance of these methods is not even acceptable when the signal to noise ratio (SNR...

متن کامل

Estimation and Reconstruction Based on Left Censored Data from Pareto Model

In this paper, based on a left censored data from the twoparameter Pareto distribution, maximum likelihood and Bayes estimators for the two unknown parameters are obtained. The problem of reconstruction of the past failure times, either point or interval, in the left-censored set-up, is also considered from Bayesian and non-Bayesian approaches. Two numerical examples and a Monte Carlo simulatio...

متن کامل

Bayesian Approach for Data and Image Fusion

Abstract. This paper is a tutorial on Bayesian estimation approach to multi-sensor data and image fusion. First a few examples of simple image fusion problems are presented. Then, the simple case of registered image fusion problem is considered to show the basics of the Bayesian estimation approach and its link to classical data fusion methods such as simple mean or median values, Principal Com...

متن کامل

Block-Based Compressive Sensing Using Soft Thresholding of Adaptive Transform Coefficients

Compressive sampling (CS) is a new technique for simultaneous sampling and compression of signals in which the sampling rate can be very small under certain conditions. Due to the limited number of samples, image reconstruction based on CS samples is a challenging task. Most of the existing CS image reconstruction methods have a high computational complexity as they are applied on the entire im...

متن کامل

Edge Artifacts in Point Spread Function-based PET Reconstruction in Relation to Object Size and Reconstruction Parameters

Objective(s): We evaluated edge artifacts in relation to phantom diameter and reconstruction parameters in point spread function (PSF)-based positron emission tomography (PET) image reconstruction.Methods: PET data were acquired from an original cone-shaped phantom filled with 18F solution (21.9 kBq/mL) for 10 min using a Biograph mCT scanner. The images were reconstructed using the baseline or...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 1991